Drive and control
Categories
- (34)
- (9)
- (3)
- (142)
- (18)
- (7)
- (4)
- (7)
- (9)
- (17)
- (2)
- (103)
- (7)
- (14)
- (7)
- (1)
- (1)
- (6)
- (155)
- (20)
- (2)
- (5)
- (111)
- (35)
- (11)
- (4)
- (58)
- (17)
- (3)
- (7)
- (62)
- (18)
- (5)
- (24)
- (7)
- (12)
- (1)
- (2)
- (2)
- (1)
- (1)
- (14)
- (12)
- (4)
- (6)
Potentialities of APA® composite shell actuators and SA75D amplifier for new dynamic applications
11 January 2016
The piloting of APA’s composite shell by SA75D power amplifier offers new opportunities for dynamic new applications. Two in particular were received and are being studied: the design of a compact table tensile micro machine for characterizing stress-strain laws at high strain rate of wires, fibers, strands and textile samples that will usefully complete the fleet of dynamic testing machines available, the generation of synthetic jets of air pulsed also studied at ONERA. The energy capacity (displacement, force) without or with an external linear load were modeled versus the rise time using the Simulink code and experimentally measured using a very light device. Other identified improvements remain to be implemented both at the APA’s actuators as the Amplifier SA75D to get some gains.
Pulsed air high performances valves improve aerodynamic flow over airplane wings
19 June 2023
The objective of the European Cleansky project is to develop new technologies for future aircraft enabling a 20-30% fuel burn reduction and related CO2 emissions and a similar reduction in noise levels compared to current aircraft. One of the ways to reach this goal is to improve the aerodynamic performances of current high lift devices. Active flow control is unanimously seen as the best mean to reach this objective. By suppressing flow separation and/or delaying stall, active flow control will increase wing aerodynamic performances. The partnership between CTEC and ONERA in the framework of the VIPER project has led to the design, manufacturing and test of an innovative pulsed jet actuator based on a CTEC amplified piezo-actuator (APA). Its aim is to provide a pulsed sonic jet up to 500Hz with a mass flow around 34 g/s through a slot 1mm wide and 80mm long. Coupled with CTEC SA75D switching power amplifier this actuator produces the expected sonic jet with an electrical consumption around 40W thanks to energy recovery. The results of the actuator characterisation (mechanical, fluidic) are presented in this paper.
LA75B powerful electronic for piezo actuators
19 June 2023
LA75B : A powerful electronic that makes APA sing higher in volume and larger in frequency.
Linear amplifiers for piezo actuators
1 January 2000
After the development of switching amplifier SA75 for piezoelectric actuator driving, CEDRAT RECHERCHE has developed linear amplifiers. The LA75 electronics are presented in the form of a 19″ rack, and are proposed into various version.
Advanced Landing Gears for Improved Impact Absorption
6 January 2008
The presented project ADLAND (AST3-CT-2004-502793) dealt with evaluating the options for adaptive shock absorbers to be applied in aircraft landing gears. Analytical design procedures were developed to simulate different potential design options and a best practice solution determined. The different hardware components regarding adaptive shock absorbers were then developed and tested with regard to adaptive landing gear model. The objectives of the project were: to develop a concept of adaptive shock-absorbers, to develop new numerical tools for design of adaptive absorbers and for simulation of the adaptive structural response to an impact scenario, to develop technology for actively controlled shock-absorbers applicable in landing gears, to design, produce and perform repetitive impact tests of the adaptive landing gear model with high impact energy
dissipation effect, to design, produce and test in flight the chosen full-scale model of the adaptive landing gear.
Control of magnetic actuators in electric contactors by current shapping
19 June 2023
Most of present electric contactors use magnetic actuators of reluctant type (so called electromagnets) that are supplied with a simple voltage source. The use of a reluctant actuator in this condition leads to a considerable force increase when the magnetic circuit is closing, which creates damaging rebounds of the electrical contacts. To have a better control of the closing dynamics, we develop an electric drive method to reduce impact speed and to improve the closing dynamics. In this method, the reluctant actuator structure is unchanged. The appropriate current shape to be injected into the actuator is determined using a calculation method.