Publications

Categories

  • (34)
    • (9)
  • (3)
  • (138)
    • (18)
    • (7)
    • (2)
    • (5)
    • (8)
    • (17)
    • (1)
    • (100)
    • (7)
  • (12)
    • (7)
    • (1)
    • (1)
  • (4)
  • (152)
    • (19)
    • (2)
    • (5)
    • (111)
    • (34)
  • (10)
    • (4)
  • (55)
    • (14)
    • (3)
    • (7)
  • (61)
    • (17)
    • (5)
    • (24)
    • (7)
  • (11)
    • (1)
    • (2)
    • (1)
    • (1)
    • (1)
  • (13)
  • (12)
    • (4)
    • (6)

Micromoteur et micro-actionneurs piezoélectriques de puissances

1 January 2002

The applications of piezoelectric actuators are spreading in various fields such as precise micro-positioning, shape control or vibration generation, control or damping.

Modular Test bed for Performance Assessment of Piezoelectric Stick-Slip Actuators

19 June 2023

Stepping piezoelectric actuators based on the stick-slip effect inherently make use of a friction contact between stator and rotor. This contact defines not only the actuator’s performance but also is prone to wear and tear. For broad use, the actuator has to be able to perform around 1 million strokes. To assess the actuator’s performance in terms of force, speed, mechanical output, electrical input, and long-term stability under different load- and environmental conditions, as well as different friction partners, a dedicated test-bed for a LSPA30µXS motor by Cedrat Technologies has been set up.

Module Stepping Piezoelectric Actuator: A versatil way of micro-positioning actuation

10 January 2016

Stepping Piezoelectric Actuators (SPA’s) – based on the Piezoelectric Friction-Inertial Actuation (PFIA) principle – are made from Cedrat Technologies Amplified Piezoelectric Actuators (APA). They use the stickslip principle to couple high resolution positioning (cm) and low volume (10cm), allowing easier multi-DoF mechanism developments and miniaturization possibilities – is presented. Results obtained on three innovative engineering models – linear long stroke, rotary and three-DoF actuators – are presented, giving the reader actual benefits of this concept and allow addressing new applications such as consumer goods and medical devices.

MRI compliant micro-motors for medical and biomedical applications

19 June 2023

The performances offered by Magnetics Resonance Imaging (MRI) are widely recognized and used by practitioners. Mainly used for diagnostic issues, MRI becomes more and more an interventional tool in image-assisted classic or robotic surgery. However, constraints imposed by the MRI strong magnetic field and strong magnetic gradients in terms of material and architecture are often obstacles to MRI guided robotics. Designers have to deal with the few choices offered to them to build a robot which will be able to respond to severe specifications, in terms of space limitations, magnetic field sensitivity and image impact. Piezoelectric micro-motors are good candidates to fulfil these requirements in several fields of applications.

MSPA motors for rotary motions

19 June 2023

Modular Stepping Piezoelectric Actuators (MSPA) are inertial motors working under the stick-slip principle [1]. The advantages of rotary MSPA are unlimited stroke, torque at rest, high resolution, nonmagnetic and vacuum compatibility. This paper presents the new MSPA developments regarding rotary motion at Cedrat Technologies for macro and micro sizes MSPA. These progresses follow the previous technical investigations around noise reduction, miniaturization at low voltage and the integration of MSPA modules [2]. In this paper two rotary piezo motors are presented: The first one is a macro size MSPA based on APA40SM. It is developed to work under nuclear environment: operational temperature up to 70 degrees, vacuum, 5 Tesla magnetic field and high radiation fields (3,5 kGy/hour gamma radiation power and 500 Mn/(cm².second) neutron radiation power). The second is a micro size MSPA based on APA30uXS. This motor is used for embedded application such as nonmagnetic shutter.

Nanometric positioning with IASI-NG Beam Splitter Mechanism Actuator

19 June 2023

This paper presents a piezoelectric motor which provides linear motion and very high resolution (40 nm steps). First, the space application (IASI-NG instrument onboard METOP-SG satellite) and associated performance requirements are presented. The internal architecture of the motor and its main components are then explained. A first focus is done on the experimental verification of the threaded interface lifetime which is a key element of the mechanism. A second focus is on the nanometric position test bench. Achieved results are provided for resolution, motion quality and position stability. Finally, results from the vibration test campaign are presented