Active control of vibration
Categories
- (34)
- (9)
- (3)
- (142)
- (18)
- (7)
- (4)
- (7)
- (9)
- (17)
- (2)
- (103)
- (7)
- (14)
- (7)
- (1)
- (1)
- (6)
- (155)
- (20)
- (2)
- (5)
- (111)
- (35)
- (11)
- (4)
- (58)
- (17)
- (3)
- (7)
- (62)
- (18)
- (5)
- (24)
- (7)
- (12)
- (1)
- (2)
- (2)
- (1)
- (1)
- (14)
- (12)
- (4)
- (6)
Advanced Landing Gears for Improved Impact Absorption
6 January 2008
The presented project ADLAND (AST3-CT-2004-502793) dealt with evaluating the options for adaptive shock absorbers to be applied in aircraft landing gears. Analytical design procedures were developed to simulate different potential design options and a best practice solution determined. The different hardware components regarding adaptive shock absorbers were then developed and tested with regard to adaptive landing gear model. The objectives of the project were: to develop a concept of adaptive shock-absorbers, to develop new numerical tools for design of adaptive absorbers and for simulation of the adaptive structural response to an impact scenario, to develop technology for actively controlled shock-absorbers applicable in landing gears, to design, produce and perform repetitive impact tests of the adaptive landing gear model with high impact energy
dissipation effect, to design, produce and test in flight the chosen full-scale model of the adaptive landing gear.
Stiff and soft stewart platforms for active damping and active isolation of vibrations
6 January 2002
As future astronomic missions will require more and more stringent resolution requirements, the high demand for an environment clean of vibrations and disturbance appears. This also leads to the need for high precision steering devices for fine pointing of sensitive optics with the highest possible accuracy. Several methods exist to reduce vibration levels: the first consists in isolating the sensitive system from the perturbation and the second in damping the structure vibration modes. Therefore, two Stewart platforms have been designed, manufactured and tested. The first is a soft hexapod that provides 6 degree-of-freedom (DOF) active isolation and the second is a stiff hexapod that provides active damping to whatever flexible payload attached/mounted to it. In addition, both hexapods have steering capabilities.
Amplified Piezo Actuator APA® with viscoelastic material for machine tool semi active damping system
8 January 2016
Modern machine tools must achieve a high precision for a better surface texture and higher flexibility for wide range of machining requirements. To fulfill these requirements, a semi-active damping system for a new generation of machine tools is proposed. The new concept is partially based on the Amplified Piezo Actuators APA® from CEDRAT Technologies. With these actuators, the dynamic behavior (stiffness and damping) of structural body components of machine tools can be controlled and adjusted to the optimum parameters. To reduce the transfer of vibrations through the active elements, a viscoelastic material was used. This article presents test results performed on the APA® with viscoelastic material. A significant reduction of the vibrational amplitude at resonance frequency was observed with additional material. The optimized quantity of viscoelastic
material reduces the full stroke of the actuator only by 10 percent. At the same time, the viscoelastic material has reduced the amplitude at resonance frequency by more than double. The designed actuator obtains a blocking force of 8.5kN. Results obtained from the tests performed on the machine tool showed significant surface texture improvement with use of the amplified piezoelectric actuator.
Amplified piezo actuators enhancement for active vibration control
7 June 2018
Amplified Piezo Actuators (APA®) from CEDRAT TECHNOLOGIES are known to be compact and especially performing in dynamic applications. The recent evolutions realized on the APA® and drive electronics allow them to address active damping better than magnetic proof mass in terms of the Force to Volume ratio above some 10Hz. The dynamic capability of the APA® has been improved thanks to preload method enhancement. Research has successfully shown the possibility to achieve a high dynamic force level similar to the static blocked force of the piezo actuator. This technical progress coupled with an amplified motion makes possible the generation of high mechanical proof mass load at relatively low frequency. It produces a force higher than 100N in a volume of Ø40x75mm within a range of [100-300Hz]. This paper presents relevant uses of APA® for active damping in machining applications. Several machining case studies are reported integrating Amplified Piezo
Actuators within the spindle head, inside the cutting tool or beside the workpiece clamp.
Design and tests of a demonstrator for filet compensation mechanism
5 January 2016
Future matrix sensors will acquire an area on ground and are then susceptible to image shift due to satellite movement during acquisition. Design, Build and Test a breadboard mechanism that could shift telescope line of sight and freeze observed area during image acquisition.
Development of the plain bearing and flexure bearing MICA300CM actuator
7 May 2018
The MICATM linear actuator family (Moving Iron Controllable Actuator) is being continuously improved at CEDRAT TECHNOLOGIES (CTEC) for applications needing high controllable stroke, force, and power. The MICA300CM is a new actuator model, having improved configuration based on cylindrical shape. A first version based on plain bearing offers up to 12mm stroke and 300N continuous force with a weigh of only 3kg. A second version is based on new frictionless flexure bearings. The former one is especially designed to achieve zero maintenance over several years of operation, with high efficiency, infinite resolution, and high controllability performance. This version of the MICA300CM has been derived to offer a proof mass configuration, for vibrationcancellation applications on machining processes. A latest version is also currently under design, and prototyping, specifically for reciprocating power piston applications, such as compressors, pressure wave generators, and pumps. Its high efficiency, ultra-long lifetime capability, and compactness, makes it perfectly suitable for embedded thermal machines based on Stirling, Joules Thomson, and Rankin Thermodynamic cycles. This paper presents this 4 design concepts, their test results and perspective for applications.