Publications

Categories

  • (34)
    • (9)
  • (3)
  • (144)
    • (18)
    • (7)
    • (5)
    • (8)
    • (9)
    • (17)
    • (2)
    • (104)
    • (7)
  • (15)
    • (7)
    • (2)
    • (1)
  • (6)
  • (155)
    • (20)
    • (2)
    • (5)
    • (111)
    • (35)
  • (11)
    • (4)
  • (59)
    • (18)
    • (3)
    • (7)
  • (62)
    • (18)
    • (5)
    • (24)
    • (7)
  • (12)
    • (1)
    • (2)
    • (2)
    • (1)
    • (1)
  • (14)
  • (13)
    • (4)
    • (6)

An improved accurate Beam Steering piezoelectric Mechanism for ATlid instrument

19 June 2023

A new tip tilt mechanism based on low voltage piezoelectric actuators has been designed by Cedrat Technologies to answer the high level of stability required for the Earthcare satellite. The Beam Steering Assembly aims to deviate a pulsed high energy UV laser beam to compensate for misalignment between the emission and reception paths of ATLID [1] with a very high stability and resolution. In this paper, the authors points out the BSM development with the main mechanism design issues including performances, mechanical and thermal stability; low power consumption; high integration level; high reliability and safety; cleanliness requirements and give the results of the qualification campaign done at Cedrat Technologies’ to establish the final functional performances in preparation of the Flight Models deliveries for the BSM.

P-FSM150S and M-FSM45 For large scale free space optical communication

8 September 2022

In this publication CEDRAT TECHNOLOGIES (CTEC) presents the design and test results of the P-FSM150S Pointing Ahead Mechanism (PAM) and M-FSM45 Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations. The specific cost-efficient hardware design is presented, dedicated to very large quantities to be manufactured, together with the performance test results over a preliminary batch of EM’s production.

P-FSM150S Fast Steering Mirror for Optical Space Constellations

8 September 2022

New space giant constellations based on Free-Space Optical Communication (FSO) are a new challenge from many perspectives. Considering the mandatory cost efficiency, with repeatability of performances, and reliability with no defect at customer integration, requires an upheaval in space production and acceptance test methods, when the quantities are beyond several thousands of units. Starting from the former PYSCHE PAM30 flight project heritage for Deep Space Optical Communication (DSOC), CEDRAT TECHNOLOGIES (CTEC) presents the new design and test results of the P-FSM150S Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations.

Piezoelectric and Magnetic Fast Steering Mirrors For Space Optical Communication

11 July 2022

New space giant constellations based on Free-Space Optical Communication (FSO) are a new challenge from many perspectives. Considering the mandatory cost efficiency, with repeatability of performances, and reliability with no defect at customer integration, requires an upheaval in space production and acceptance test methods, when the quantities are beyond several thousands of units. In this publication CEDRAT TECHNOLOGIES (CTEC) presents the design and test results of the P-FSM150S Pointing Ahead Mechanism (PAM) and M-FSM45 Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations. The specific cost-efficient hardware design is presented, dedicated to very large quantities to be manufactured, together with the performance test results over a preliminary batch of EM’s

Point Ahead Mechanism for Deep Space Optical Communication Development of a New Piezo-Based Fine Steering Mirror

19 June 2023

The purpose of this paper is to present the development of a novel tip-tilt mechanism, with integrated optics, designed for the JPL Deep Space Optical Communication (DSOC) module of the upcoming Psyche mission (2022 launch). This paper presents the design, assembly and tests of the produced models. Regarding the design phase, an emphasis was put on the mirror calculations to ensure that the required flatness would be maintained after integration, and that the part would withstand the thermal/mechanical environment. The actual optical measurements performed after assembly are also presented. The qualification results for a new alpha-case removal process for titanium parts are presented. Tests results are especially interesting regarding the temperature behavior of the mechanism, impact on the stroke, and strain gage sensor feedback.

ATLID Beam Steering Mechanism and derived new piezoelectric based devices for optical applications

19 June 2023

In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APAÂź and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APAÂź technology, which allows the combination of long stroke while maintaining high resolution positioning of optical elements, is presented with experimental performances.