Publications
Categories
- (34)
- (9)
- (3)
- (144)
- (18)
- (7)
- (5)
- (8)
- (9)
- (17)
- (2)
- (104)
- (7)
- (15)
- (7)
- (2)
- (1)
- (6)
- (155)
- (20)
- (2)
- (5)
- (111)
- (35)
- (11)
- (4)
- (59)
- (18)
- (3)
- (7)
- (62)
- (18)
- (5)
- (24)
- (7)
- (12)
- (1)
- (2)
- (2)
- (1)
- (1)
- (14)
- (13)
- (4)
- (6)

Point Ahead Mechanism for Deep Space Optical Communication Development of a New Piezo-Based Fine Steering Mirror
19 June 2023
The purpose of this paper is to present the development of a novel tip-tilt mechanism, with integrated optics, designed for the JPL Deep Space Optical Communication (DSOC) module of the upcoming Psyche mission (2022 launch). This paper presents the design, assembly and tests of the produced models. Regarding the design phase, an emphasis was put on the mirror calculations to ensure that the required flatness would be maintained after integration, and that the part would withstand the thermal/mechanical environment. The actual optical measurements performed after assembly are also presented. The qualification results for a new alpha-case removal process for titanium parts are presented. Tests results are especially interesting
regarding the temperature behavior of the mechanism, impact on the stroke, and strain gage sensor feedback.

Magnetically actuated fast steering mirrors
19 June 2023
Free-Space Optics (FSO) for optical communication request new compact low-power high-stroke high-bandwidth Fast
Steering Mirrors (FSM). To address this need, CEDRAT TECHNOLOGIES has developed a Magnetically-actuated Fast
Steering Mirror called M-FSM, taking heritage of its MICA™ actuators. This FSM offers Rx Ry strokes larger than +/-
2° with a 250Hz bandwidth when tilting a 31mm diam mirror. Requested power is minimized leading to low heating.
Vibration tests have been performed to define first limits and conditions for the M-FSM to bear external vibrations. Large
bandwidth closed loop control is achieved using integrated eddy current sensor and a state feedback-based controller.

Long stroke/High resolution tip tilt mechanism
19 June 2023
Multi degree of freedom (dof) mechanisms are widely required into micro or macro manipulation fields as well as in optronics functions. Commonly available mechanisms may be divided into two main categories. The first is industrial robots (serial or parallel). These offer large range of motion, in rotation and translation. Their resolution is usually limited in the sub-millimeter range. The second category achieves very high resolution motion (sub-nanometer) but is limited to a few decades of microns. A way to combine both long stroke and resolution is to use piezo motors into multi dof mechanisms. The aim of this paper is to present a combination of both advantages into a low volume tripod actuator. The Tripod Actuator by Cedrat Technologies (TrAC) is a 3 dof mechanism offering +/-35° rotation around X and Y axis and a 10mm Z translation stroke into a low volume of Ø50x50mm.

Contactless Position sensors for space mechanisms based on eddy current sensing
19 June 2023
For more than 20 years, CTEC has been involved in various space missions, delivering products designed for severe environment conditions (vibrations, shocks, vacuum, humidity, wide thermal range including cryogenic). Eddy current sensor (ECS) technology, using printed circuit board (PCB) for printed coils, provides both a good resolution/accuracy and a good robustness against temperature variations.These sensors are available commercially off the shelf (COTS).

An improved accurate Beam Steering piezoelectric Mechanism for ATlid instrument
19 June 2023
A new tip tilt mechanism based on low voltage piezoelectric actuators has been designed by Cedrat Technologies to answer the high level of stability required for the Earthcare satellite. The Beam Steering Assembly aims to deviate a pulsed high energy UV laser beam to compensate for misalignment between the emission and reception paths of ATLID [1] with a very high stability and resolution. In this paper, the authors points out the BSM development with the main mechanism design issues including performances, mechanical and thermal stability; low power consumption; high integration level; high reliability and safety; cleanliness requirements and give the results of the qualification campaign done at Cedrat Technologies’ to establish the final functional performances in preparation of the Flight Models deliveries for the BSM.

ATLID Beam Steering Mechanism and derived new piezoelectric based devices for optical applications
19 June 2023
In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum
compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in
the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APA® and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APA® technology, which allows the combination of long stroke while maintaining high
resolution positioning of optical elements, is presented with experimental performances.