Publications

Categories

  • (34)
    • (9)
  • (3)
  • (143)
    • (18)
    • (7)
    • (4)
    • (8)
    • (9)
    • (17)
    • (2)
    • (104)
    • (7)
  • (14)
    • (7)
    • (1)
    • (1)
  • (6)
  • (155)
    • (20)
    • (2)
    • (5)
    • (111)
    • (35)
  • (11)
    • (4)
  • (59)
    • (18)
    • (3)
    • (7)
  • (62)
    • (18)
    • (5)
    • (24)
    • (7)
  • (12)
    • (1)
    • (2)
    • (2)
    • (1)
    • (1)
  • (14)
  • (13)
    • (4)
    • (6)

Design and evaluation of a piezo xy stage

19 June 2023

The ROSETTA/MIDAS mission of the Europeans Space Agency (ESA) intends to study the dust collected from the Wirtanen comet using an Atomic Force Microscope (AFM). This instrument utilzes an XY piezoelectric stage to achieve precise positioning in two in-plane orthogonal directions, and a Z actuator to support the needles for the analyses of dust particles in the out-of-plane direction.

Design of a 2 stages compressor for mobility applications, using compact and efficient Moving Iron Controllable Actuators

19 June 2023

An actuator is rescaled for integration into a compressor used for the liquefaction of hydrogen vapor boil off, into a propellant storage system. The goal is to evaluate the feasibility of liquid hydrogen zero boil off, for long duration storage at 20 Kelvin cryogenic liquid condition. This article presents the actuator trade off, selection and special features imposed by the application. The actuator design is presented, its characteristics are measured, and resulting performances are presented and discussed.

Design of a dynamic tribometer applied to piezoelectric Inertia Drive Motors – In situ exploration of stick-slip principle

19 June 2023

In Inertia Drive Motors, generated motion is based on stick-slip principle. Current analytical models are predictive enough to calculate qualitatively their optimal performances, such as maximal step size and speed, with relatively few input parameters. But, they do not take into account the contact life and temporal evolution of parameters as friction factor all along lifetime of IDM. So, analytical models reach their limits when precise predictions are necessary. This investigation aims at understand wear mechanisms to model temporal evolution of friction. Such an understanding requires the reconstitution of the contact life through the evaluation of 1st and 3rd body flows. To do so, a new IDM-representative tribometer is designed. First bodies – coated TA6V and polymer – are not see-through. They are replaced alternatively by an intermediate transparent first body to observe the contact dynamically and in-situ. Friction factor, step size and mean speed are also measured. Preliminary results shows that wear profiles from real IDM and tribometer are similar. Direct observations bring out particles of TA6V coating are firstly snatched, then moves in contact and finally trigs others particle detachments.

Capteur électromagnétique effort et applications

19 June 2023

This article deals with a stress sensor for cables which has been designed, built and test. it is based on a special magnetostrictive effect of ferromagnetic materials as high elastic limit steels used for bridge cables or prestressed concrete.

Cardiolock: an Active Cardiac Stabilizer

19 June 2023

Off-pump Coronary Artery Bypass Grafting (CABG) is still today a technically difficult procedure. In fact, the mechanical stabilizers used to locally suppress the heart excursion have been demonstrated to exhibit significant residual motion. We therefore propose a novel active stabilizer which is able to compensate for this residual motion. The interaction between the heart and a mechanical stabilizer is first assessed in vivo on an animal model. Then, the principle of active stabilization, based on the high speed vision-based control of a compliant mechanism, is presented. In vivo experimental results are given using a prototype which structure is compatible with a minimally invasive approach.

Characterisation of magneto-rheological fluids for actuators applications

19 June 2023

Magnetorheological fluids (MRF) are magnetically controlled fluids and they find more and more industrial applications in actuation functions. These include shock absorbers, semi-active dampers, clutches, brakes, haptic actuators & devices. Several of these applications have been studied by Cedrat Technologies for its industrial customers, and a device-oriented test bench has been developed in order to characterise the magneto-mechanical properties of MRF such as the magnetisation curve, the yield stress ….