Piezo motors
Categories
- (34)
- (9)
- (3)
- (142)
- (18)
- (7)
- (4)
- (7)
- (9)
- (17)
- (2)
- (103)
- (7)
- (14)
- (7)
- (1)
- (1)
- (6)
- (155)
- (20)
- (2)
- (5)
- (111)
- (35)
- (11)
- (4)
- (58)
- (17)
- (3)
- (7)
- (62)
- (18)
- (5)
- (24)
- (7)
- (12)
- (1)
- (2)
- (2)
- (1)
- (1)
- (14)
- (12)
- (4)
- (6)
ACTUATOR2008 Stepping piezoelectric actuators Abstract
19 June 2023
Stepping Piezoelectric Actuators (SPA) are new long-stroke linear piezoelectric motors for micro/nano positioning applications benefiting of the advantages and the heritage of the APA. SPA are formed of only 4 parts: the well-established Amplified Piezoelectric Actuators (APA), a front mass, a clamp and a rod.
ACTUATOR2008 Stepping piezoelectric actuators based on APA®
1 January 2008
Abstract:
Stepping Piezoelectric Actuators (SPA) are new small long-stroke linear piezoelectric motors for micro/nano positioning applications benefiting of the advantages and the heritage of the APA. SPA is formed of only 4 parts: the well-established Amplified Piezoelectric Actuators (APA), a front mass, a clamp and a rod. SPA operates by accumulation of small steps, using inertial mode, impact forces and stick-slip effects, allowing performing long strokes (> 10mm). Main advantages induced by the choice of the APA above a usual inertial drive mechanism (IDM) are high reliability, low peak current ( 20mm/s), useful forces (from 1N for XS to 30N for SM type) and nano positioning mode.
Actuators for Space Applications: State of the Art and New Technologies
19 June 2023
Actuators in space are broadly used to operate satellites’ platform and payload devices. Despite their common utilisation, actuators still represent critical subsystems as their failure might often lead to severe, when not catastrophic, effects on the spacecraft operations. Environmental conditions to which actuators are exposed in space are generally not favourable: operating temperature ranges and deep vacuum are certainly the most critical ones.
Fine stepping piezo actuator for IASI-NG
7 June 2018
Many applications and more specifically space projects would have use of a stable sub-micrometre positioning actuator. In order to meet this need, Cedrat Technologies has designed the new FSPA brand. This linear stepping actuator offers sub-micrometric positioning resolution along 5mm stroke combined with high actuation force (>100N) and the ability to hold its position without power. Starting from the FSPA, a special version is being developed for the IASI-NG space instrument. This light (500g), fully redundant actuator is designed to achieve 150µm stroke with locking at rest, 60 N force with a 25-50 nm step resolution and resistance to launching. The paper presents the base FSPA actuator and the new high performance space variant.
Lpm motor test
19 June 2023
We are delighted in announcing the successful test of our LPM20 linear piezoelectric motor, carried out in June this year at the CNES (French Agency Space), Toulouse in vacuum conditions.Developed for positioning applications, the piezoelectric motor
has proved to be a very interesting solution thanks to its high massive force, its zero consumption at rest and its high precision. For space applications, it is a question of obtaining an identical behaviour in ambient and in vacuum conditions.
However, the friction drive that is the key to the functioning of the piezoelectric motor, limits the lifespan and poses tribology problems.
Long stroke/High resolution tip tilt mechanism
19 June 2023
Multi degree of freedom (dof) mechanisms are widely required into micro or macro manipulation fields as well as in optronics functions. Commonly available mechanisms may be divided into two main categories. The first is industrial robots (serial or parallel). These offer large range of motion, in rotation and translation. Their resolution is usually limited in the sub-millimeter range. The second category achieves very high resolution motion (sub-nanometer) but is limited to a few decades of microns. A way to combine both long stroke and resolution is to use piezo motors into multi dof mechanisms. The aim of this paper is to present a combination of both advantages into a low volume tripod actuator. The Tripod Actuator by Cedrat Technologies (TrAC) is a 3 dof mechanism offering +/-35° rotation around X and Y axis and a 10mm Z translation stroke into a low volume of Ø50x50mm.