Space

Categories

  • (34)
    • (9)
  • (3)
  • (138)
    • (18)
    • (7)
    • (2)
    • (5)
    • (8)
    • (17)
    • (1)
    • (100)
    • (7)
  • (12)
    • (7)
    • (1)
    • (1)
  • (4)
  • (152)
    • (19)
    • (2)
    • (5)
    • (111)
    • (34)
  • (10)
    • (4)
  • (55)
    • (14)
    • (3)
    • (7)
  • (61)
    • (17)
    • (5)
    • (24)
    • (7)
  • (11)
    • (1)
    • (2)
    • (1)
    • (1)
    • (1)
  • (13)
  • (12)
    • (4)
    • (6)

P-FSM150S Fast Steering Mirror for Optical Space Constellations

8 September 2022

New space giant constellations based on Free-Space Optical Communication (FSO) are a new challenge from many perspectives. Considering the mandatory cost efficiency, with repeatability of performances, and reliability with no defect at customer integration, requires an upheaval in space production and acceptance test methods, when the quantities are beyond several thousands of units. Starting from the former PYSCHE PAM30 flight project heritage for Deep Space Optical Communication (DSOC), CEDRAT TECHNOLOGIES (CTEC) presents the new design and test results of the P-FSM150S Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations.

Picard Sodism pointing mechanism based on PPA40M-NM-SV

19 June 2023

PICARD is a French space scientific mission. Its objectives are the study of the origin of the solar variability and the study of the relations between the Sun and the Earth’s climate. The Satellite wassuccessfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, nearYasny (Russia). The payload consists in two absoluteradiometers measuring the total solar irradiance and animaging telescope to determine the solar diameter andasphericity.

Piezo actuators for telescope active optics

8 September 2022

Piezo actuators are commonly used within Fast Steering Mirrors (FSM) for active stabilization, pointing and tracking functions. Such compact mechanisms are requested for Free-Space Optics and Deep Space Optical Communication since they are embedded and offer fast (up to 1kHz) and precise (µRad) tip tilt motion (up to +/-2°). The use of large amplified actuator within mirror telescope is new and become relevant since it displays enough power, reliability and do not fall apart when a failure occurs: steady state design with high stiffness 64N/µm. The purpose of this paper is to present the development and the qualification of the world largest Amplified Piezo Actuator ever integrated in a telescope tip-tilt mirror of more than 2 meters diameter.

Piezo qualification for space applications

6 January 2002

Piezoelectric actuators are generally deemed good candidates for driving compact and efficient mechanisms, offering advantages like fine precision, fast time response, low power consumption, cost annd easier implementation. But to meet space, devices have to comply to many other requirements besides functional ones.

Piezo-composite patches applied to the detection of defects using lamb wave focusing

19 June 2023

Ultrasonic-based SHM (Structural Health Monitoring) applications usually rely on the use of piezo-electric patches to emit and receive ultrasonic surface acoustic waves. The principle is to study the propagation of the waves through a structure to assess its health. Because of the elevated number of echoes and possible modes of propagation of the acoustic waves within the structure, those applications suffer from a burden of signal processing. This paper presents a composite piezo-electric patch and its electronics that were designed and successfully tested for reducing the complexity of the SHM detection schemes.

Piezoelectric and Magnetic Fast Steering Mirrors For Space Optical Communication

11 July 2022

New space giant constellations based on Free-Space Optical Communication (FSO) are a new challenge from many perspectives. Considering the mandatory cost efficiency, with repeatability of performances, and reliability with no defect at customer integration, requires an upheaval in space production and acceptance test methods, when the quantities are beyond several thousands of units. In this publication CEDRAT TECHNOLOGIES (CTEC) presents the design and test results of the P-FSM150S Pointing Ahead Mechanism (PAM) and M-FSM45 Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations. The specific cost-efficient hardware design is presented, dedicated to very large quantities to be manufactured, together with the performance test results over a preliminary batch of EM’s