Domain
Categories
- (34)
- (9)
- (3)
- (142)
- (18)
- (7)
- (4)
- (7)
- (9)
- (17)
- (2)
- (103)
- (7)
- (14)
- (7)
- (1)
- (1)
- (6)
- (155)
- (20)
- (2)
- (5)
- (111)
- (35)
- (11)
- (4)
- (58)
- (17)
- (3)
- (7)
- (62)
- (18)
- (5)
- (24)
- (7)
- (12)
- (1)
- (2)
- (2)
- (1)
- (1)
- (14)
- (12)
- (4)
- (6)
Beam splitter mechanism actuator for IASI NG
3 September 2020
The Infrared Atmospheric Sounding Interferometer New Generation (IASI-NG) is a key payload element of the second generation of European meteorological polar-orbit satellites (METOP-SG) dedicated to operational meteorology, oceanography, atmospheric chemistry, and climate monitoring.
Beam steering mechanism for earthcare atmospherice Lidar Instrument: an improved piezo tip-tilt mechanism
19 June 2023
In the context of the ATLID instrument [1] embedded in the EarthCARE mission (Earth Cloud, Aerosol and Radiation Explorer), a Beam Steering Assembly is deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID with a very high stability and high resolution. Within the EarthCARE mission, led by ESA, Astrium is responsible for the ATLID instrument. The BSA development, manufacture and tests were assigned by Astrium to Sodern, an EADS filial.
Beam steering mirrors: from space applications to optronic applications
19 June 2023
Fast growing Laser and new optic applications drive more and more needs for beam steering mirrors (BSM) and Fast Steering Mirror (FSM). For space optic instruments, CEDRAT TECHNOLOGIES has developed for 20 years several piezoelectric tip-tilt mechanisms. Presented recent examples include the ATLID BSA small tit tilt for quasi static nano pointing and MEFISTO, a large tit tilt for fast micro positioning. These space mechanisms perform high precision functions while being compact, lightweight and resistant to external vibrations and shocks. As shown in the paper, these advantages allow these technologies addressing several needs for other optronic applications than space, such as active stabilisation, micro scanning, disturbance compensation in IR imagers or telescopes.
BRUCE – Electromagnetic Actuated Pin Puller
12 January 2012
Pin pullers are used to hold, lock or secure deployable or moving parts on spacecrafts during their launching. These ‘one shot’ actuators used to be based on explosive charges. Pin pullers important characteristics are their retraction force that needs to be sufficient to pull the pin out of the locking mechanism, their maximum radial force, which limits the size of the secured system, and their dimensions and weight. The possibility of resetting the mechanism is also an appreciated advantage. Upon request of CNES, the French National Space Agency, CEDRAT TECHNOLOGIES has designed a resettable electromagnetic actuated pin puller, called BRUCE
Vibration energy harvesting in aircraft using piezoelectric actuators
19 June 2023
In the aicrft vehicle, a part of the produced energy is transformed into mechanical vibration energy losses. This rue is more than ever true when the need for electrucal energy is a crucial problem. So, systems which are able to transform the mechanical energy in a scavenged electrical energy are very interesting.
Electro-fluidic components based on smart materials for aircraft electro-hydraulic
19 June 2023
In the context of a more electrical aircraft, in order to explore the feasibility of non usual solutions, electro-fluidic components based on smart materials and new Electro-Hydraulic-Actuators (EHA) concepts, based on active valves and magnetostrictive vibrating pump, have been studied. Active valves based on different magnetostrictive and piezoelectric actuators have been designed, realised, tested and compared. The magnetostrictive version uses a new Amplified Magnetostrictive Actuator (AMA) based on a stack of Giant Magnetostrictive Materials (GMM) and placed inside an elliptical amplification ring.