Publications

Categories

  • (34)
    • (9)
  • (3)
  • (143)
    • (18)
    • (7)
    • (4)
    • (8)
    • (9)
    • (17)
    • (2)
    • (104)
    • (7)
  • (14)
    • (7)
    • (1)
    • (1)
  • (6)
  • (155)
    • (20)
    • (2)
    • (5)
    • (111)
    • (35)
  • (11)
    • (4)
  • (59)
    • (18)
    • (3)
    • (7)
  • (62)
    • (18)
    • (5)
    • (24)
    • (7)
  • (12)
    • (1)
    • (2)
    • (2)
    • (1)
    • (1)
  • (14)
  • (13)
    • (4)
    • (6)

Piezoelectric and Magnetic Fast Steering Mirrors For Space Optical Communication

11 July 2022

New space giant constellations based on Free-Space Optical Communication (FSO) are a new challenge from many perspectives. Considering the mandatory cost efficiency, with repeatability of performances, and reliability with no defect at customer integration, requires an upheaval in space production and acceptance test methods, when the quantities are beyond several thousands of units. In this publication CEDRAT TECHNOLOGIES (CTEC) presents the design and test results of the P-FSM150S Pointing Ahead Mechanism (PAM) and M-FSM45 Fast Steering Mirror (FSM) Engineering Models, developed under ARTES project TELCO-B for future FSO constellations. The specific cost-efficient hardware design is presented, dedicated to very large quantities to be manufactured, together with the performance test results over a preliminary batch of EM’s

Beam splitter mechanism actuator for IASI NG

3 September 2020

The Infrared Atmospheric Sounding Interferometer New Generation (IASI-NG) is a key payload element of the second generation of European meteorological polar-orbit satellites (METOP-SG) dedicated to operational meteorology, oceanography, atmospheric chemistry, and climate monitoring.

Preliminary Design of a Trailing Edge Morphing Surface for Rotorcraft

8 March 2020

This paper presents an overview of the preliminary design process and findings aimed at morphing of trailing edge (TE) control surfaces for rotorcraft. A design methodology for a camber morphing control surface is presented, although twist can also be induced by applying differential camber of the morphing section span. The concept investigated relies on utilizing conventional aircraft structures and materials for morphing purposes; thus, in essence, has the potential to fulfil the conflicting requirements of lightweight, flexibility and strength at the same time. Based on this concept, the preliminary design work shows that an active trailing edge camber morphing mechanism can be designed after careful considerations of design and actuation requirements. The numerical results presented also indicate that such a morphing scheme increases the 2D aerodynamic efficiency.

Large Stroke Fast Steering Mirror for Space Free-Space Optical communication

2 March 2020

Free-Space Optics and Deep Space Optical Communication request new compact low-power high-stroke high-bandwidth Fast Steering Mirrors. To address this need, CEDRAT TECHNOLOGIES has developed a Magnetically-actuated Fast Steering Mirror called M-FSM, taking heritage of its MICA™ technology. This mechanism offers Rx Ry strokes larger than +/-2° with a 250Hz bandwidth when tilting a 10mm-diameter mirror. Closed loop control is achieved using integrated eddy current sensors. Requested power is reduced leading to low heating and allowing high duty cycle. Vibration tests allow to define first limits and conditions for the M-FSM to bear external vibrations.

Study of a dome shaped PVDF loudspeaker

2 March 2020

PVDF loudspeakers are used for some applications in audio and could be used for applications in active control where light structures are needed, for example in aeronautics. For all these applications, it is necessary to be able to predict the acoustic response of such systems in order to help the designer. Some papers propose models for calculating the acoustic pressure radiated by these loudspeakers.

Ongoing progress in flow control actuators and required drive electronics

6 February 2020

In the frame of the Cleansky 2 projects SYNJET3C and FLOCOS, CEDRAT TECHNOLOGIES (CTEC) and TRISITEC are collaborating with both FRAUNHOFER and ONERA institutes, two major European research leaders in the development of Synthetic Jet Actuators (SJA) for Aerospace applications. While SYNJET3C project is dedicated to SJA mechanical designs and optimisation, as well as testing including wind tunnel tests, FLOCOS project is dedicated to the design and manufacturing of a specific SJA drive Electronic called SADS (Synthetic Jet Actuator Drive System).