Publications

Categories

  • (34)
    • (9)
  • (3)
  • (138)
    • (18)
    • (7)
    • (2)
    • (5)
    • (8)
    • (17)
    • (1)
    • (100)
    • (7)
  • (12)
    • (7)
    • (1)
    • (1)
  • (4)
  • (152)
    • (19)
    • (2)
    • (5)
    • (111)
    • (34)
  • (10)
    • (4)
  • (55)
    • (14)
    • (3)
    • (7)
  • (61)
    • (17)
    • (5)
    • (24)
    • (7)
  • (11)
    • (1)
    • (2)
    • (1)
    • (1)
    • (1)
  • (13)
  • (12)
    • (4)
    • (6)

Preliminary Design of a Trailing Edge Morphing Surface for Rotorcraft

8 March 2020

This paper presents an overview of the preliminary design process and findings aimed at morphing of trailing edge (TE) control surfaces for rotorcraft. A design methodology for a camber morphing control surface is presented, although twist can also be induced by applying differential camber of the morphing section span. The concept investigated relies on utilizing conventional aircraft structures and materials for morphing purposes; thus, in essence, has the potential to fulfil the conflicting requirements of lightweight, flexibility and strength at the same time. Based on this concept, the preliminary design work shows that an active trailing edge camber morphing mechanism can be designed after careful considerations of design and actuation requirements. The numerical results presented also indicate that such a morphing scheme increases the 2D aerodynamic efficiency.

Progress In Magnetostrictive Sonar Transducers

19 June 2023

Continous interest from the French Navy (DRET and CERDSM) has permitted significant improvements to magnetostrictive transducers in order to produce low-frequency high-power sonar sources. These improvements can be appreciated by looking at three transducers.

ATLID Beam Steering Mechanism and derived new piezoelectric based devices for optical applications

19 June 2023

In Space & Defence (as well as in many others fields), there is a trend for miniaturisation in active optics requiring new actuators. Applications also often require the ability to withstand high vibrations and shocks levels, as well as vacuum compatibility for space applications. A new generation of small and smart actuators such as piezoelectric (piezo) actuators, are resolving this trend, thanks to their capacity to offer high energy density and to support both extreme and various requirements. This paper first presents the BSM mechanism and its requirements, the technologies involved in the design and the validation campaign results. Secondly, a derived XY piezoelectric positioning stage based on the same APA® and associated Strain Gage sensing technology is presented with its associated performances. Finally, a new piezoelectric motor based on the APA® technology, which allows the combination of long stroke while maintaining high resolution positioning of optical elements, is presented with experimental performances.

ATLID BSA Beam steering assembly piezo tip tilt

19 June 2023

ATLID (ATmospheric LIDar) is one of the four instruments of EarthCARE satellite, it shall determine vertical profiles of cloud and aerosol physical parameters such as altitude, optical depth, backscatter ratio and depolarisation ratio. The BSA (Beam Steering Assembly), included in emission path, aims at deviating a pulsed high energy UV laser beam to compensate the pointing misalignment between the emission and reception paths of ATLID [1]. It requires a very high stability and high resolution.

Pulsed air high performances valves improve aerodynamic flow over airplane wings

19 June 2023

The objective of the European Cleansky project is to develop new technologies for future aircraft enabling a 20-30% fuel burn reduction and related CO2 emissions and a similar reduction in noise levels compared to current aircraft. One of the ways to reach this goal is to improve the aerodynamic performances of current high lift devices. Active flow control is unanimously seen as the best mean to reach this objective. By suppressing flow separation and/or delaying stall, active flow control will increase wing aerodynamic performances. The partnership between CTEC and ONERA in the framework of the VIPER project has led to the design, manufacturing and test of an innovative pulsed jet actuator based on a CTEC amplified piezo-actuator (APA). Its aim is to provide a pulsed sonic jet up to 500Hz with a mass flow around 34 g/s through a slot 1mm wide and 80mm long. Coupled with CTEC SA75D switching power amplifier this actuator produces the expected sonic jet with an electrical consumption around 40W thanks to energy recovery. The results of the actuator characterisation (mechanical, fluidic) are presented in this paper.

Qualification of Euclid near infrared spectro photometer cryomechanism – An application of CTEC ECS

19 June 2023

Already presented at 2015 ESMATS symposium [1], the CEA-Cryomechanism (CM) is a cryogenic rotating actuator that can operate from room temperature down to cryogenic environments, under vacuum or nitrogen atmosphere. In the framework of the Euclid-NISP space program, after having built two bread board model (BBM) units, CEA has undergone the integration of three qualification model (QM) units, among which one unit is going through a full qualification program (the two remaining units are intended to be qualified at upper system level).