Piezo actuators

Categories

  • (34)
    • (9)
  • (3)
  • (138)
    • (18)
    • (7)
    • (2)
    • (5)
    • (8)
    • (17)
    • (1)
    • (100)
    • (7)
  • (12)
    • (7)
    • (1)
    • (1)
  • (4)
  • (152)
    • (19)
    • (2)
    • (5)
    • (111)
    • (34)
  • (10)
    • (4)
  • (55)
    • (14)
    • (3)
    • (7)
  • (61)
    • (17)
    • (5)
    • (24)
    • (7)
  • (11)
    • (1)
    • (2)
    • (1)
    • (1)
    • (1)
  • (13)
  • (12)
    • (4)
    • (6)

Super amplified piezo actuator

19 June 2023

MICROMEGA DYNAMICS is a spin-off company of the “Université Libre de Bruxelles” (ULB), Department of Mechanical Engineering and robotics of Pr PREUMONT. This department created in 1989, is specialized in the modeling and control of mechatronic systems and in the active control of vibrations.

Frequency Dependence of Mouse Brain Tissue Stiffness Measured in vivo with MR Elastography

19 June 2023

Magnetic resonance elastography (MRE) is a non-invasive imaging technique for quantitative measurement of the mechanical properties of biologic tissue in vivo [1]. The clinical interest in MRE has largely been driven by the direct relationship between tissue health and stiffness. As a result, MRE may provide significant clinical value for the non-invasive diagnosis of pathology and response to therapy by tracking tumor development and monitoring therapeutic response. MRE may also have considerable value in the development of treatment protocols in pre-clinical, rodent models of cancer. Because of cost and versatility, the mouse, in particular, is widely employed in oncologic studies. To resolve its small anatomic features, MRE experiments in mice must be performed with high driving frequencies (>600 Hz). However, high-frequency waves exhibit increased attenuation, reducing wave penetration depth and making it more difficult to impart motion deep into tissue with sufficient amplitude to overcome background noise. Also, biologic tissue is viscoelastic; hence, its response to load depends on the driving frequency. Recent MRE studies in mouse brain have been performed in high-field scanners (7 – 11.7T) at single driving frequencies of 1000 and 1200 Hz [2,3]. Here, we perform elastography in mouse brain tissue at 4.7T and report viscoelastic material properties over a range of driving frequencies (600 – 1800 Hz).

Design of a dynamic tribometer applied to piezoelectric Inertia Drive Motors – In situ exploration of stick-slip principle

19 June 2023

In Inertia Drive Motors, generated motion is based on stick-slip principle. Current analytical models are predictive enough to calculate qualitatively their optimal performances, such as maximal step size and speed, with relatively few input parameters. But, they do not take into account the contact life and temporal evolution of parameters as friction factor all along lifetime of IDM. So, analytical models reach their limits when precise predictions are necessary. This investigation aims at understand wear mechanisms to model temporal evolution of friction. Such an understanding requires the reconstitution of the contact life through the evaluation of 1st and 3rd body flows. To do so, a new IDM-representative tribometer is designed. First bodies – coated TA6V and polymer – are not see-through. They are replaced alternatively by an intermediate transparent first body to observe the contact dynamically and in-situ. Friction factor, step size and mean speed are also measured. Preliminary results shows that wear profiles from real IDM and tribometer are similar. Direct observations bring out particles of TA6V coating are firstly snatched, then moves in contact and finally trigs others particle detachments.

The design and qualification of the piezo actuated

19 June 2023

As part of the Lisa Technology Package (LTP) on board the LISA-PATHFINDER spacecraft, the LISAPATHFINDER interferometer is of the heterodyne Mach-Zehnder type. It requires as input two light beams derived from the same source but with a small frequency difference (a few kHz). These two optical beams are produced in the Laser Assembly (LA) via the “Laser Modulation Unit” (LMU). The LMU includes an optical bench, two Acousto-Optic Modulators and two Optical Delay Lines [1].

Tool adaptor for active vibration control in turning operations

19 June 2023

A tool adaptor with built-in active vibration damping device to dynamically stabilize the turning process is presented in this paper. It can be used in standard CNC-lathes and allows the usage of off-the-shelf tool heads. The vibration compensation system is based on a multilayer piezoactuator that is in collocation with a piezoelectric force sensor. An analogue controller based on the integral force feedback method is used for active damping.

High performance synthetic jet actuator for aerodynamic flow improvement over airplane wings

7 June 2018

In the framework of a French National Program, the project ASPIC aims at using synthetic jet actuators to improve aerodynamic performance of aircrafts. The partnership between Cedrat Technologies (CTEC) and the French Aerospace Lab (ONERA) in this project has led to design, manufacture and test a high efficiency innovative synthetic jet actuator. This device relying in part on an ONERA patent is actuated by a CTEC amplified piezoactuator (APA). Its aim is to provide a high speed synthetic jet compatible with flow control application on aircrafts or any other vehicle. Latest available test results and experimental performances of the ASPIC synthetic actuator are presented in this document: in particular, a peak exit velocity of 135m.s-1 during suction, and of 150m.s-1 during blowing, with an optimal actuation frequency bandwidth between 200 and 300Hz.