Publications

Category

  • (152)
    • (19)
    • (2)
    • (5)
    • (111)
    • (34)
  • (13)
  • (34)
    • (9)
  • (12)
    • (7)
    • (1)
    • (1)
  • (138)
    • (18)
    • (2)
    • (7)
    • (7)
    • (5)
    • (8)
    • (17)
    • (1)
  • (11)
    • (2)
    • (1)
    • (1)
    • (1)
    • (1)
  • (10)
    • (4)
  • (55)
    • (3)
    • (14)
    • (7)
  • (4)
  • (3)
  • (61)
    • (7)
    • (24)
    • (17)
    • (5)
  • (12)
    • (4)
    • (6)
APA100M - amplified piezo actuator

Isolation vibratoire d’un objet étendu

19 juin 2023

Un nombre croissant d’applications exige un très haut niveau de précision : fabrication de semi-conducteurs, microscopie à force atomique, microscopie à balayage, machines-outils, etc. Une telle précision ne peut être atteinte que dans des environnements très stables. La procédure standard consiste à monter l’équipement sensible sur une lourde platine isolante, parfois appelée table optique, qui peut être passive ou active.

ERMR08 : Bascule et amortisseur MRF autobloquants

8 janvier 2008

Les actionneurs MRF sont de nouveaux composants électromécaniques utilisant des fluides magnétorhéologiques (MRF). Lorsqu’ils sont soumis à des champs magnétiques suffisamment élevés, les MRF passent d’un état liquide à un état quasi solide.

Contrôle actif des vibrations d’une structure spatiale à l’aide d’actionneurs piézoélectriques amplifiés

19 juin 2023

Les nouveaux actionneurs piézoélectriques fabriqués par Cedrat Technologies ont été mis au point pour le contrôle du positionnement de l’optique spatiale, mais ils se répandent largement dans divers domaines de l’ingénierie tels que le positionnement précis, le contrôle intelligent des formes et la génération ou le contrôle des vibrations. Leur capacité à contrôler ou à amortir activement les vibrations a été démontrée avec succès à l’échelle du laboratoire dans des applications spatiales. Dans un premier cas, les actionneurs piézoélectriques ont été utilisés à la fois pour le contrôle des vibrations de lancement et pour le contrôle du positionnement en orbite d’un miroir de télescope. Dans une deuxième série d’applications spatiales, ces actionneurs piézo-électriques ont été intégrés avec succès dans une poutrelle spatiale utilisant des tendons actifs pour le contrôle des micro-vibrations, comme cela a été présenté publiquement lors des Journées industrielles de l’espace (ISD2001, Noordwijk, 9-10 mai 2001) et comme cela a été présenté dans cet article.

Amortissement actif des vibrations appliqué aux structures de ski

19 juin 2023

Depuis de nombreuses années, le domaine du contrôle actif des vibrations est en plein essor et un grand nombre de nouvelles applications utilisant des actionneurs intelligents sont développées. Dans l’étude suivante, ces concepts sont adaptés et appliqués à une structure générale de ski pour amortir les grands modes de vibrations tout en conservant la robustesse du contrôle et les charges statiques pendant le trajet. Des simulations intégrant des modèles FEM couplés à des modèles électromécaniques ont été élaborées pour obtenir les principales performances et étudier la stabilité de la boucle.

Système piézo intégré au ski

19 juin 2023

Depuis de nombreuses années, le domaine du contrôle actif des vibrations s’est développé et de nombreuses nouvelles applications utilisant des actionneurs intelligents ont vu le jour. En 2003, CEDRAT TECHNOLOGIES en collaboration avec SKI ROSSIGNOL a initié un projet soutenu par l’ESA où ces concepts (matériaux intelligents et contrôle actif des vibrations) ont été adaptés et appliqués à une structure de ski. L’objectif du projet était d’amortir les grands modes de vibrations tout en conservant la robustesse du contrôle et les charges statiques pendant la descente du ski.

Un nouvel actionneur piézoélectrique amplifié pour positionnement précis et amortissement actif

19 juin 2023

Deux caractéristiques typiques des actionneurs piézoélectriques directs sont des déplacements de dix micromètres et des raideurs élevées. Récemment, les actionneurs multicouches ont été améliorés, et ils affichent maintenant des déformations d’environ 1200 ppm à de faibles niveaux d’excitation (moins de deux cents volts). Ils sont donc bien adaptés au positionnement précis de dispositifs optiques. Mais pour les besoins industriels, ces performances sont encore insuffisantes pour positionner des dispositifs avec des déplacements plus importants (de l’ordre de plusieurs centaines de micromètres).