

FORTH: FORCE-CONTROLLED TOOL HOLDER FOR VIBRATION-LESS, ACCURATE AND CHIP JAMMING-FREE INTERNAL TURNING

OBJECTIVES

The FORTH project aims at developing a mechatronic tool holder to provide a solution to the three problems that currently limit machining quality and/or productivity in turning operations :

- Active damping vibration suppression,
- Tool deformation,
- Chip jamming.

APPLICATIONS

Internal turning includes boring, bottle boring and trepanning operations performed in lathes to accurately create or enlarge a hole in a part. Internal turning is used in the manufacturing of a huge range of different parts in sectors such as aerospace, oil and gas, energy generation, automotive, naval, paper, and construction machinery.

FRAMEWORK

Within the framework of the FORTH project, CEDRAT TECHNOLOGIES is involved in several key tasks :

- Determination of the specifications of the actuators and sensors by test results analyses performed on a Ø32mm and Ø50mm boring bars in terms of :
 - » Dynamic force,
 - » Accelerations,
 - » Current and voltage,
 - » Bandwidth.
- Modeling of the system dynamics (boring bar and proofmass actuator) and optimization of the closed loop response,
- Development and trade-off of several solutions for active damping,
- Design of two types of piezo actuators for active damping in boring bars Ø32mm,

Fig. 1: Modeling of the impact of a proof-mass system on the boring bar response – Bode diagram of the acceleration at the tip of the boring bar versus the cutting force with a proof-mass active damper on or off

Fig. 2: Boring bar Ø32mm equipped with a PM35XS proof mass piezo actuator

Fig. 3: Electronic box for signal conditioning

- Design of a dedicated PCB (Printed Circuit Board) for acceleration measurements at the level of the actuator,
- Design of dedicated PCBs for signal conditioning,
- Manufacturing of a dedicated electronic rack with integrated controller and driver,
- Mounting and factory verification of the piezo actuators,
- Tests of the active boring bar (equipped with the piezo actuators) in real conditions (machining operations) and performances analyses.

MAIN RESULTS:

Two actively damped boring bars were achieved relying on Cedrat Technologies piezo actuators customized for the project:

- 4 x PPA20M,
- 1 x PM35XS (based on XY35XS stage).

Fig. 4: Piezo actuators factory verification using laser instrument

Fig. 5: Boring bars designs (left: PPA20M design, right: PM35XS design)

The controller applied during the tests uses the velocity as a feedback signal to close the loop (Fig. 6) with additional filters to isolate the parasitic modes.

Fig. 6: Closed loop control structure

It was possible to reach more than 80% damping reduction on the first mode of each boring bar (hammer shock test).

Fig. 7: FRF amplitude for both open loop and closed loop results in the case of a) PPA20M boring bar: b) PM35XS boring bar

Final performances of the mechatronic tool holders are given in Table 1.

BORING BAR Ø32X10D EQUIPPED WITH:	4 X PPA20M	1 X PM35XS
Boring bar resonance frequency [Hz]	190	285
Damping ratio @ Boring bar resonance on both axis	>80%	>80%
Actuator voltage range [V]	[-20, 150]	[-20, 150]
Actuator envelope [mm ³]	Ø32x53	Ø26x100
Estimation of the actuator dynamic force at the boring bar tip [N] @ Boring bar resonance	± 11.7	± 4
Actuator bandwidth [Hz]	Up to 1kHz	[100, 600]
Stiffness reduction vs plain boring bar	20%	negligible

Table 1: Mechatronic tool holders final performances

PARTNERS INVOLVED :

- SIKULAN (Spain)
- DANOBAT (Spain)

SIKULAN

- DARPAMOTION (Hungary)
- Budapest University of Technology and Economics (BME) (Hungary)

🔼 DANOBAT

EG

YETEM

Ű

78

1